Az emberi látás fizikai jellemzői

A látás mechanizmusa A látott kép fogalma Érzékeljük a bennünket körülvevő világot, és az egyik legtöbb információt tartalmazó érzékelésünk a látás. Az érzet, amit látásunk kelt, az a kép, amit agyunk alkot. A képalkotás folyamata során a szemünkbe érkező fénysugarakat a szem leképező rendszerével a retinára vetíti, és az ott létrejött képpel a fotoreceptorokat ingerelve, az agyhoz kapcsolódó idegsejteken keresztül, idegimpulzusok formájában az agyunkba juttatja.

Adott tárgy különböző részéről érkező inger hatására a kialakuló inger az agyban képpé áll össze, ezt hívjuk fényészleletnek.

az emberi látás fizikai jellemzői megfeszítve a szemed

Ennek kialakulásában már mentális folyamatok is helyet kapnak. A fényingertől a fényészleletig tartó úton végigkövetve az egyes látószervek részeinek működését, a következő főbb csoportosítást tehetjük: a szem leképező mechanizmusa; a retinán elhelyezkedő, optikai sugárzást ideg-ingerületté alakító, sejtcsoportok csapok és pálcikák mechanizmusa; a csap és pálcika mechanizmust az agy felé továbbító ingerek kialakulása, még a retina szintjén; az idegpályák mechanizmusa a retina és az agy látásfeldolgozó területei között; végül az agyi feldolgozás, melynek során kialakul a látott tárgy mentális képe, hozzárendelődik forma- mozgás- színinformáció; asszociációk alakulnak ki már ismert képekkel.

Már az ókorban foglalkoztatta a gondolkodókat a látás és a képalkotás kérdése. Püthagorasz követői a látást a tárgyért nyúló kézhez hasonlították: a lélek sugara a pupillán keresztül éri el a tárgyat, amelyet letapogat, és így ismeri fel az értelem az alakot és a színt. Epikurosz és követői úgy vélekedtek, hogy az ember a környezetében levő tárgyakról leszakadt képet — egy légies ködön keresztül — javulás a rövidlátásból pupilláján át érzékeli.

Így válik az ember számára láthatóvá a tárgy, és a fény terjedésének sebességével azonos időben érzékeli.

Az atomisták szerint a szemlélt tárgyról leszakadt atomok áramlanak a szembe, és így alkot az értelem képet a világról. Arisztotelész szerint a megvilágított tárgyról visszaverődő fény a közvetítő levegőn át érkezik a szemhez.

A fényérzékelés fejlődése Az első lépés a fény és a sötétség megkülönböztetése. Az egysejtűek a sejthártyájukkal érzékelik a fény javítja a látástornát, és ennek változására valamilyen mozgással reagálnak.

Az érzékelés második foka, amikor már a fény intenzitását és a fényforrás irányát is meg tudja határozni az élőlény. A következő lépcsőfok a formalátás, az utolsó pedig a színek és a mozgás érzékelése. Az ostoros moszatoknál már szemfoltot is találhatunk.

A csalánozóknál sem fejlődött ki külön szerv a fény érzékelésére, a különböző kívülről jövő ingereket egész testfelületükön át veszik fel. Néhány medúzafajnál viszont megjelennek a kezdetleges fényreceptorok is. A laposférgeknél a különböző fényérzékeny sejtek összetömörülnek és ezek a hám alá süllyednek. Így kezdetleges csésze- és gödörszemek alakulhatnak ki.

A gyűrűsférgeknél az állat feji részénél találjuk meg ezeket a sejttömörüléseket. Egyes fajoknál már találkozhatunk bonyolult felépítésű látószervvel pl. A puhatestűek közül a csigákra és a fejlábúakra jellemző a fényérzékelés.

A tüskésbőrűek törzsénél nem találunk látószervet, de valamilyen formában ők is érzékelik a fényt. Ez a fényérzékenység feltehetően a kültakaróban jelen levő pigmentált sejtekhez köthető. A halak hólyagszeme, a fejlábúak szemével ellentétben, nem a hám betüremkedése, hanem az agy kitüremkedése. A halak rövidlátók, így látásuk nem tökéletes, de szemük szín- és képlátásra alkalmas. A kétéltűek látószerve igen fejlett, de csak a mozgást érzékelik. A hüllők 4.

A kígyók két szemhéja átlátszó és összenőtt, ezért nem pislognak.

2. fejezet - Az emberi látással kapcsolatos alapismeretek

Egyes madarakban a hipotalamusz bizonyos idegsejtjei érzékelik a koponyatetőn átszűrődő gyenge fényt. Így érzékelik a kakasok is a hajnal közeledését. Kifutási helyénél van a vakfolt, ahol a retinán nem találunk receptorsejteket. Az elülső és a hátsó szemcsarnok a szivárványhártya előtt és mögött található, itt kering a csarnokvíz, mely a lencsét táplálja.

Fizika a mindennapi életben A látás Egyik legfontosabb érzékszervünk a szemünk. Az emberi látás fizikai jellemzői egészséges emberi szem az elektromágneses sugárzás látható fénynek nevezett, körülbelül nm és nm közötti hullámhosszú tartományát fogja fel. Az elektromágneses spektrumnak a látható fénnyel határos tartományai az ultraibolya 10 nm— nm és az infravörös nm—1,3 μm l. A szemnek a látásban betöltött szerepe sokrétû.

Akkomodáció A szemben a fénytörésért főleg a szaruhártya és a lencse a felelős. A szem fénytörő képességét dioptriában D adjuk meg. A szaruhártya fénytörő képessége minden pontján azonos, míg a lencsénél ez nincs így. Attól függően változik, hogy a lencse magját vagy réteges köpenyét vizsgáljuk. Ez a fénytörő képesség egyénenként változhat, de az egyszerűség kedvéért az orvosok megállapítottak a szaruhártyára és a lencsére együttvéve egy 66 D átlag törőképességet. A szem alkalmazkodását akkomodációját a lencse és a szem izmai teszik lehetővé.

Azt a legtávolabbi pontot, amelyet alkalmazkodás nélkül élesen látunk, távolpontnak nevezzük. Közelpontnak azt a legközelebbi pontot hívjuk, amelyet maximális alkalmazkodás esetén látunk.

A közelpont fiatal korban egészséges szem esetén 10 cm távolságban, a távolpont a végtelenben van. A két pont közötti távolság adja a szem alkalmazkodóképességét, ami 10—15 D közé esik.

Az emberi látás fizikai jellemzői

A korral a lencse és a lencsefüggesztő rostok is vizet veszítenek, így megváltozik a lencse alkalmazkodóképessége. Ez biztosítja, hogy a retinára eső kicsinyített, fordított kép éles legyen. Közeli tárgyak nézésekor a szem izmai összehúzódnak, ezáltal a lencsetokhoz rögzült feszítő rostok ellazulnak, a lencse gömbölydedebbé válik.

Ekkor a pupillák összeszűkülnek. Távoli tárgyak nézésekor ennek a fordítottja játszódik le. A halaknál, a kígyóknál és a kétéltűeknél nem a lencse domborúsága változik, mert a szemlencsét mozgatják előre-hátra speciális izmok segítségével. A pupilláknak nem csak ez az alkalmazkodása ismert. A szembogár akkor is összeszűkül, ha világítás éri.

Bővebben: Elsődleges látókéregventrális rendszer és dorzális rendszer Az OGM-ből az információ az agykéregbe jut, amelynek első állomása az elsődleges látókéreg. A látómező itt kis darabkákra van felszabdalva érző mezőmelyekben a sejtek lokális elemi tulajdonságok meglétét keresik: például különböző dőlésű vonalkákat, színeket. Az elsődleges látókéregből az információ két nagy pályán továbbítódik. A ventrális pálya a tárgyak azonosítását végzi. A másik nagy pálya a dorzális pályaamely a tárgyak helyét azonosítja, és a tárgyakhoz kapcsolódó viselkedést irányítja.

Az éjjeli életmódot folytató gerincesekben ez a fajta alkalmazkodás kiegészül a pupillanyílás alakváltozásával is.

Ezen kívül, az érhártya rétegében fényvisszaverő hártyát is találunk, ami az el nem nyelt fénysugarakat visszaveri, amelyek ezáltal újból áthaladnak a retinán, ezzel is növelve a fény intenzitását.

A horizontális sejtek a fotoreceptorok idegvégződései által alkotott rétegben, az úgynevezett külső szinaptikus rétegben teremtenek kapcsolatokat a szomszédos sejtek között, az amakrin sejtek pedig a bipoláris és ganglion sejtek közé ékelődve töltenek be hasonló funkciót. A fotoreceptorok koncentrikus felépítésű, ganglion sejtekhez kapcsolódó receptormezőkbe rendeződnek, melyek akár át is lapolódhatnak egymáson.

A tárgyak színe Láttuk korábban, hogy fénynek az elektromágneses sugárzási spektrum kb. E tartományból is az emberek többsége a nm és nm közötti fényhullámokat érzékeli csak. A spektrum színeinek hullámhossza és frekvenciája az alábbi táblázatban látható: 4. Az elektromágneses hullámok jelentős részét ugyanis a légkör elnyeli, így azok nem érik el a Föld felszínét. Az egyik a rádióhullámok tartománya, a másik pedig a látható fényé.

A látható fény tartományának sugarai az emberi látás fizikai jellemzői azaz ami végül az evolúció során láthatóvá lett — igen kis tárgyak felületéről is egyszerű szabályokat követve verődnek visszaés ráadásul az anyagtól függően általában igen jellegzetes visszaverődési színképet produkálnak, így az ezt érzékelni képes élőlények látássérült könyvek hasznosítható képet kapnak a környezetükről.

A szín A szín fogalma a látáshoz szorosan kapcsolódó vizuális érzéklet hasnyálmirigy-gyulladás és látás tulajdonsága.

Az észlelt szín függ a színinger spektrális tulajdonságaitól, az ingert létrehozó tárgy méretétől, alakjától, szerkezetétől, és környezetétől; függ az észlelő adaptációs tapasztalataitól, befogadóképességétől és a megfigyelthez hasonló érzékletekre vonatkozó emlékeitől. Ha egy tárgyra színes fényt vetítünk, vagy a tárgy maga színes; vagy mindkét feltétel teljesül, akkor a róla visszaverődő fény spektruma hiányos; egyenlőtlen — vagyis színes.

Brutális titkok - Garyaev piramisa, quantum információs krémek, friss hullámgenetikai információk

Ezt színes fényingernek nevezzük. Műszeres mérését a színinger metrika feladata ellátni.

az emberi látás fizikai jellemzői Normális látásom van

Az emberi látószerv képes a fénynek ezt a tulajdonságát érzékelni, ekkor a látószervben színes fényérzéklet keletkezik. A látóideg által az agyba továbbított érzékletet az agy feldolgozza, és a látókéregben színes észlelet keletkezik.

Emberi szem

Az észleletet az emberi agy hangulatának, pszichológiai beállítottságának megfelelően értékeli. Ilyen jelenség például a szukcesszív színkontraszt a színingerek megítélése azok egymás utánisága alapján. A szín az emberi látás fizikai jellemzői önmagában használni megtévesztő. Háromfajta érzékelő fotopigmentet lehet megkülönböztetni, melyek érzékenysége a vörösa zöld és a kék színeknél a legerősebb.

az emberi látás fizikai jellemzői Csökkenti-e a fizikai aktivitás a látást

A látórendszer fontos tulajdonsága a színállandóság, tehát az agy a színeket nem abszolút módon azonosítja, hanem relatív úton, a környezethez hasonlítva. Egy szín származhat monokromatikus fényből, ha egy adott hullámhosszúságú fénysugarat észlelünk, vagy több fény keverékéből, ha több különböző hullámhosszúságú fénysugár összességét érzékeljük.

A szemünk ugyanúgy sárgának érzékeli a sárga színnek megfelelő hullámhosszú fényt, mint a vörös és a zöld színeknek megfelelő hullámhosszú fények keverékét stb. Vannak színek, amelyeknek nincs monokromatikus megfelelője, csak színkeveréssel állíthatók elő, például a bíbor.

Azt a színt, amely a teljes spektrumon azonos intenzitású, fehérnek nevezzük. Mivel a legtöbb élőlény, így az emberek látása is a Nap spektrumához igazodott, az érzékelés szempontjából a Napból érkező fényt is fehérnek nevezhetjük, noha ez csak a látható tartományban egyenletes. A fekete szín nem fény, a fény teljes hiánya válthatja ki. A kibocsátott fényenergia hullámhossz szerinti függőségét spektrális eloszlásnak vagy spektrumnak nevezzük 4. Planck az emberi látás fizikai jellemzői közölte képzési videó a kísérletileg mért spektrumok elméleti magyarázatát, amelyhez fel kellett tételeznie a h.

A spektrum maximumának helye a tárgy hőmérsékletével fordított arányban változik, K hőmérsékleten Nap a maximum nm-en zöldben van. Ezt a színképi összetételt értelmezi az agyunk fehérnek.

A testünk K-en 10 mikron körüli maximummal sugároz. A kibocsátott összenergia a T hőmérséklet negyedik hatványával arányos.

Ugyanakkor a szemünk agyunk a Napéhoz legjobban hasonlító mesterséges megvilágítást szeretne. Egy fényforrás színhőmérsékletét az általa okozott színérzet és egy hipotetikus feketetest-sugárzó által létrehozott színérzet alapján határozzák meg.

További a témáról